SPECTRA OF TWO-DIMENSIONAL TURBULENCE
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Asiswell known (see, e.g., [1]), the large-scale turbulence in the ocean and atmosphere can be assumed to be
quasi~two~dimensional. The interest in these motions is primarily due to the fact that they possess high ener-
gies, and their role in the general circulation is substantial, In this connection we address the important prob-
lem of spectra of two~-dimensional turbulence,

The dynamics of turbulence in planar flows differs substantially from that of three-dimensional flows
[2, 3]. This is due to the presence of an additional integral of motion, the enstrophy (equal to half of the mean
square vorticity), which exists only in the two-dimensional case.. For sufficiently large Reynolds numbers the
cascade process of enstrophy transfer with finite velocity €, in the small-scale region becomes dominant.
Dimensionality considerations in the inertia interval lead then to a turbulence spectrum of the form
E, = c,8,%3 k-3,

The hypothesis of spectral enstrophy transport and the "minus three" law following from it were first formu-~
lated by Kraichnan [2]. ‘

1. We obtain this result as an exact solution of the equations of motion in the direct interaction approxi-
mation, We write the Euler equation in the Fourier representation

(1.1)
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and vy is the Fourier transform of the velocity field.

To study the statistical characteristics of Eq. (1.1) it is convenient to use Wyld's diagrammatic technique
[4], which is based on two series, for the Green function G¥ and for the pair correlator of the velocity field
. First-order perturbation theory corresponds to the direct interaction model [5], In the three~dimensional
case this approximation gives for the spatial spectrum of the kinetic energy the asymptotic equation Jj ~ k-g/z,
which contradicts the Kolmogorov hypothesis of self-similarity. The drawback of this scheme is that it exag-
gerates the effect of large-scale motions on the evolution of small-scale inhomogeneities [6].

Some of the most divergent diagrams, describing pure transport, were summed up by L'vov [7]. The improved
equations, as shown in [8], have an exact solution corresponding to a Kolmogorov spectrum, The subscripts of
stationary helicity spectrum were found [9] within the frame of these equations. A similar procedure is used in
the present paper to find spectra of two-dimensional turbulence,

The improved direct interaction equations are [8]
Gy=(@—F)" Ty= |G P Dy (g=Kk, 0),

*~

Eq V I's Iﬁlk" kl .‘f"uo 0 fa, 18(g + g1 -+ ¢a) — 8 (7 + ¢,)) dg,dg,,
D, = S‘[r k |k1k I o, [ 0(g+a+g)—8(e+ ql)]dqldqz,

where G3P = G,A%% T3P =T A Gy = (Gro—ivdvi Jo= Jxo-kvdvi ees)y i8 the average over a random velocity field
at an arbitrary point r, t by means of the Wyld procedure, and

af 8
T (R, = [ AL g, + A, | AEI°ALEY

is the peak, being a homogeneous function of its arguments, In the two-dimensional case it satisfies the iden-
tities

Gor'kii. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 2, pp. 59-66, March-
April, 1981, Original article submitted February 27, 1980,
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which are consequences of the energy and enstrophy conservation laws

We further define the following combination [10]
Ly =2i1m|®,G; + T, 5],

with L, =0 being equivalent to the Dyson equation for Ig. We have
[ Lyodo = Im | dodgydg,d (0 + 01 + 2 T Ik,
{1.4)

0= Ly —
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In the case under consideration this equation is similar to the kinetic equation wave in the theory of weak

turbulence for the nondecaying dispersion law.
First we find a solution of Eq. (1.4) describing thermodynamic equilibrium, For this we rewrite the inte-

grand function in (1.4) in the form
T T I (TR G T T, &, G, 1+ T B 10, 8+ a0,

e %,
whence it is seen that due to (1.2) Eq. (1 4) admits a solution
7(, = —17;1- Im (7,,.

A more general solution is of the form

7,1 =L Im G, a and b — const,
a

1
a - bkz’

making (1.4) vanish due to enstrophy conservation,
Another solution of this equation, describing nonequilibrium flow distributions, is sought in the scale~
{1.5)

1

invariant form
T 1 ® ®
Gq_,’:;g(kT), q——kﬁf(;s_)'

The first relation between the unknown indices is obtained from the Dyson equation
2 +p =2+ d,
where t is the homogeneity power of the interaction parameter, and d is the dimensionality of space.
One more relation between s and p can be found by applying the factorization procedure [8, 11] to Eq.

(1.4).
We perform a conformal transformation

In this case the second term in (1.4) at the scale-invariant spectrum (1.5) transforms to the first one with a

factor (k/kp)X, where x=2t+2d — s — 2p.
The third term in (1.4) is similarly transformed. As a result the integrand function is
Y, ek 'f‘( ) Fk; Kok }

rg IE\;kg qul g, {Fk Kok, (%;-) F, [k,

The curly bracket can be made to vanish both due to energy conservation (the solution with x=0) and due

to enstrophy conservation (the solution with x=—2). As a result we have, respectively, for the spatial spectra
Ey =22k T,,d,

By~ k5 (x —0, =

Ep ~k3 (x =—2,5s=0,p =4)

2, We evaluate the energy and enstrophy flow directions from the spectrum, We write the energy balance
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This equation conserves the total energy yEkdl: and the total vorticity j‘k‘lEhdk. It has the form of a continuity
[} (]
equation, therefore the right-hand side can be represented as a divergence of corresponding flows
I3
g =n 5' dkk“”‘—;— Im \ T [0, 75675, 8 (k + Ky -+ ky)dk,dk,,
d .

where i=0 corresponds to energy flow, and i =2 to enstrophy flow.
We express Jaﬁ Y as a series in powers of Gy and Ji. Inthe direct interaction approximation we have
in the stationary case1

Z&Gllz'lanh 4 r. «!a G J J (2'1)

e, = [ dode,dogd(o+o,+oq) | TEEN,GaT ol o, + T, e,

As a result we obtain for g

13
er=n | KL,dk, (2.2)

[]

For a power distribution for the spatial spectrum
Jy=cik ' (2.3)

Ly also has a scale~invariant form
L, = D(x)k—d+=,

We then find in the case of convergence of L for the distribution (2.3) the following expression for A
in accordance with (2,2):
g; == qkitd Lp/(x -+ i),
" For x=—ig; contains a singularity of type 0/0, therefore we obtain for flows at stationary spectra*

&; = nkitidL,/0x|ye;. .

To find the derivative it is convenient to use the factorization equation for L, in the form

L, = 5 k ImS dodg,dg.d (9 -+ 91+ 92) [Fk Iklkza "qquz -+ P;’“z I%E1qu"4"01
+ T8, 1B, T 7o) (7°T% B0, + B3 "TE, |68, + k77T, i)

Hence we have for &

b= — L ?/zkdjdk kB (k + Ky + Ky) B, (B Rg) "
(2.4)

x [RPrE IR, + BTE, o K0T, U {e o % B3, - e In T, |20, + i In 2T, i),
where 0,5, = S g (k') f (k32) f (k3t) dt is a positive-definite function (see, e.g., [3]), which for corresponding approxi-
0

mations can be performed symmetrically in permutations of their arguments [2, 13, 14]. It is seen from (2.4)
that cl~s€/ , which, naturally, also follows from dimensionality considerations.

In the two~dimensional case it follows from Eqgs. (1.2), (1.3) that

I‘1«2 kkl = 2 1 P“ Ik1k21
(2.5)
]‘.2

L2

121
g [ kpk = ]‘ [

*A similar relation for flows holds in the theory of weak turbulence [12].
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Substituting (2.5) into (2.4) and introducing new variables by k =kv, k, =ku, we finally obtain for g;
e — i:——c%":z‘g g z]udvﬁwu [l"a W] (uv)
3 (=D V {(w + ) — 1l — =)

X w2 — v 4 12— )" — @ — 1) 0" {02 — Yullnu — (2 — ) v Invl.
The region of integration A is determined by the triangular inequaltiy with sides u, v, and 1:|u—~v] S1=

u+v. The flow directions are given by the sign of the integral (2.6); for sign £;> 0 the flow is directed to the
range of large wave numbers, and for the opposite inequality — toward small wave numbers,

=Pi+l

{2.8)

1t follows from the analysis (see Appendix) that the integrand function in (2.6) is sign-definite, with
Sign €y = —sign py(py — 2), sign &y = sign py(ps — 2).
For the nonequilibrium solutions py=% and p, =4 we have in this case
sign e, <0, sign &, > 0.
The result obtained can be found in [15, 16] by other considerations.
3. For the results obtained to have physical sense it is necessary to prove the locality of turbulence,
The latter physically implies that vortex interaction with scales of the same order are much stronger than

vortex interactions of different scales, Formally the locality property requires that the integrals in (1.4) con~
verge. Elementary analysis shows that the integrals in (1.4) converge at the upper limit for both spectra.

Consider the convergence in the region q;<<q (g, ~q). In this case the most dangerous terms with which
most of the divergence in (1.4) is related are the terms proportional to qu
Im j. dgy Tx lﬁf—(kﬂl {T% m’— (k) Gol —(aray) T T (eiy) [%,?IG,(quql)Jq} Iy

For small g; with account of Iy Kiky O ~ T k ;. and the use of identity (1.2) and the property Gq-"G* these
terms are grouped into the expression

(3.1)
LB rk lrvl\']kl

51/4/3 lzrl‘l

The integration is carried over the region where the radicand is positive,

Since the spectrum is lel ¢ [ =0,* this guarantees convergence of the integral (3.1) and implies
locality of the spectra obtained.

4, Since the enstrophy flow is directed toward large wave numbers, when the wave vector approaches the
internal Kolmogorov scale n, = (v/e}®)'/? (v is the molecular viscosity coefficient) the vorticity spectrum must
vanish. We find the correction to the vorticity spectrum due to the vanishing effect in the region kn, <1, where
direct account of viscosity in the hydrodynamic equations cannot be taken,

For this purpose we linearize Eq, (1.4) over the vorticity spectrum. The perturbations are represented
in the form

8Jyw = /d_(s2+p2+a)f2 <'0—3')5 8Gye = k_-(s2+oc)g2 <'”"§“), :
K2 3 2%
where @ is an unknown power determined by the vanishing effect,
After integration over k the linearized equation 6Lq =0 acquires the following form for the correction:
[ 8Lpadk = Im { TE| 87287 8 (k + K, + ky) dkdk,dk, = 0,

where B.I’éﬁ'sz is the linearized expression for Jﬁﬁ‘;k2 of (2.1). After a conformal transformation over frequency

we reach the equation
Idekdq,dq.zG (g+ 91+92)[F% El’kz + (7?‘) ky 1B k+( ) kg %ﬁl]‘s-]ﬁfqz 0,

where y = (1/s)(2 + @), JH = [ 8(0 + 0, + w,) dodo,do, /55,
*This upper limit singularity was noted in [9].

193



By identity (1.2) this expression vanishes at y =0, whence & ==—2, Thus, 6Jk~k2Jk. At the viscous
boundary 8Jy ~ Jy, and the power spectrum must be cut off [7]. We then have for kn, <1

Ep = g2y k™ (1 — ¢ (kny)3,
where ¢ is a positive dimensionless coefficient of order unity.

We note that the viscous correction to frequency vk? is (k112)2 times smaller than the Kolmogorov fre-
quency Wy~ s{“ko, therefore direct account of viscosity leads to a correction to Ji of the same order:

8Ju/Ty ~ eslkns)?, 3 ~ 1.

Further turning attention to the fact that if the viscosity is nonvanishing an interval of viscous dissipation
is generated, an energy flow &, appears in this case in the region of large wave pumbers. For low viscosity
this flow is small: '

~

gy ~ 138,
and the statistical regime in this region is mostly determined by the enstrophy flow,

5, The single-flow spectra obtained above must be realized in two inertial intervals, while the spectrum
Ek~53'3k #* is realized for k<k,, where k,~' =L is the scale of excited turbulence, and E; ~ €¥°k™® for k>k,.

Two~flow distributions are realized under real conditions: A correction with constant energy appears on
the background of a Kolmogorov spectrum with constant vorticity, and vice versa.* The two-flow distribution
can be expressed in terms of the dimensionless function F depending on the flow ratio,

In this case the self-similar solution is

Fh — 82/91“:—317 (k 80)

By

The explanation of specific structures of two-flow distributions requires separate treatment.

APPENDIX

Due to the symmetry of the integrand function in (2.6) and the integration region in u=*v it is sufficient
to consider the case u>v to determine the sign of the integral. In this case it is necessary o consider three
regions: 1) 0<v<l,u>1;2) v>1,u>1; 3) 0<v>1, O<u<l, The sign of the integral is determined by the sign
of the product

fu = v? - @2 — 1) " — @2 — 1)V — Dt Inu— (@2 — 1) v Inv}
We determine the signs of the factors in the regions under consideration
K(u,v, p3) =[u2 —v? 4 (v —1) u't —(u:—-1) vpi],
K1, p) =0, 2 = 20 (" — 1) — p" 7 (2 — ) =F (u, v, p),
Pi—2 —— v}'i—‘a)'

F(d,v, p))=0,3 ﬁ = 2paun (U

For u>v sign(8F/du) =sign pj(pi—2).

Then for 0<v<1, u>1 sign F(u, v, pj)= sign (8K/av) =sign pi(pi—2) and sign K(u, v, pj) =—sign pj(pi—2).

For v>1, u>1 sign F(u, v, pj) = sign (9K/av) =sign py(p;—2) and sign K(u, v, p;j) =sign pi(pi-f 2).

For 0<v<1, O<u<1 sign (8K/8v) =—sign pj(p;—2) and sign K(u, v, pj) =—sign (8K/8v) =sign pi(pi—2).
Consider the sign of the function

D, v)= (* — i).ui Inu — @ — i lnv= (@ — O — 1) g — o)},

where o; (z) == 1" . i=0,2.

a) g, (2) = :n 31: since ¢:)(X)<0, @ (1)~ ¢,(v) <0 for u>v, We then have in the regions u>1, v>1 and 0<v<1,
.
O0<u<l @y(u, v)<0, and for 0<v<l, u>1 ®y(u, v)>0;

*This is indicated by numerical calculations (see, e.g., [17]).
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b)Y g, (2) = 1' Z. since qo;(x) >0 it follows that @,(u)—=¢,(v) >0 for u>v. Inthis case we have in the regions
—1

where u>1, v>1 and 0<v<l, 0<u<l, ®,(u, v)>0 and ®y(u, v)<0 for 0<v<l, u>1, Thus,

10,
11,
12,
13.
14,
15,

16.
17,

sign &y = sign K-sign @y = —signpy(p, — 2), sign g, = sign K -sign @, = sign pa(py — 2).
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